
Chapter 6

Linear Quadratic Optimal Control

6.1 Introduction

In previous lectures, we discussed the design of state feedback controllers using using eigenvalue
(pole) placement algorithms. For single input systems, given a set of desired eigenvalues, the
feedback gain to achieve this is unique (as long as the system is controllable). For multi-input
systems, the feedback gain is not unique, so there is additional design freedom. How does one
utilize this freedom? A more fundamental issue is that the choice of eigenvalues is not obvious. For
example, there are trade offs between robustness, performance, and control effort.

Linear quadratic (LQ) optimal control can be used to resolve some of these issues, by not
specifying exactly where the closed loop eigenvalues should be directly, but instead by specifying
some kind of performance objective function to be optimized. Other optimal control objectives,
besides the LQ type, can also be used to resolve issues of trade offs and extra design freedom.

We first consider the finite time horizon case for general time varying linear systems, and
then proceed to discuss the infinite time horizon case for Linear Time Invariant systems.

6.2 Finite Time Horizon LQ Regulator

6.2.1 Problem Formulation

Consider the m− input, n−state system with x ∈ ℜn, u ∈ ℜm:

ẋ = A(t)x + B(t)u(t); x(0) = x0. (6.1)

Find open loop control u(τ), τ ∈ [t0, tf ] such that the following objective function is minimized:

J(u, x0, t0, tf ) =

∫ tf

t0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt + x(tf )T Sx(tf ). (6.2)

where Q(t) and S are symmetric positive semi-definite n×n matrices, R(t) is a symmetric positive
definite m×m matrix. Notice that x0, t0, and tf are fixed and given data.

The control goal generally is to keep x(t) close to 0, especially, at the final time tf , using little
control effort u. To wit, notice in (6.2)

• xT (t)Q(t)x(t) penalizes the transient state deviation,

• xT (tf )Sx(tf ) penalizes the finite state
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• uT (t)R(t)u(t) penalizes control effort.

This formulation can accommodate regulating an output y(t) = C(t)x(t) ∈ ℜr at near 0. In this
case, one choice for S and Q(t) are CT (t)W (t)C(t) where W (t) ∈ ℜr×r is symmetic positive definite
matrix.

6.2.2 Solution to optimal control problem

General finite, fixed horizon optimal control problem: For the system with fixed initial
condition,

ẋ = f(x, u, t); x(t0) = x0 given,

and a given time horizon [t0, tf ], find u(t), t ∈ [t0, tf ] such that the following cost function is
minimized:

J(u(·), x0) = φ(x(tf )) +

∫ tf

t0

L(x(t), u(t), t)dt

where the first term is the final cost and the second term is the running cost.

Solution:

λ̇ = −Hx = −∂L

∂x
− λT ∂f

∂x
(6.3)

ẋ = f(x, u, t) (6.4)

Hu = −∂L

∂u
− λT ∂f

∂u
= 0 (6.5)

λT (tf ) =
∂φ

∂x
(x(tf )) (6.6)

x(t0) = x0. (6.7)

This is a set of 2n differential equations (in x and λ) with split boundary conditions at t0 and tf :
x(t0) = x0 and λT (tf ) = φx(x(tf )), and an equation that would typically specify u(t) in terms of
x(t) and/or λ(t). We shall see the specialization to the LQ case soon.

Proof: The solution is obtained by converting the constrained optimal control problem into an
unconstrained optimal control problem using the Lagrange multiplier function λ(t) ∈ ℜn:

J̄(u, x0) = J(u(·), x0) +

∫ tf

t0

λT (t)[f(x, u, t)− ẋ]dt.

Note that d
dt

(λT (t)ẋ(t)) = λ̇T (t)x(t) + λT (t)ẋ. So

∫ tf

t0

λT ẋ dt = λT (tf )ẋ(tf )− λT (t0)ẋ(t0)−
∫ tf

t0

λ̇T x dt.

Let us define the so called Hamiltonian function H(x, u, t) := L(x, u, t) + λT (t)f(x, u, t). Thus,

J̄ = φ(x(tf ))− λT (tf )x(tf ) + λT (t0)x(t0) +

∫ tf

t0

[

H(x(t), u(t), t) + λ̇(t)x(t)
]

dt

The necessary condition for optimality is that the variation δJ̄ of the modified cost with respect
to all feasible variations δx(t), δλ(t), δu(t) and δλ(tf ) should vanish.
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δJ̄ = [φx − λT ]δx(tf ) + λT (t0)δx(t0) +

∫ tf

t0

{

[Hx + λ̇T ]δx(t) + [Hu]δu(t)
}

dt

+

∫ tf

t0

δλT (t)[f(x(t), u(t), t)− ẋ]dt

Since x(t0) = x0 is fixed, δx(t0) = 0. Otherwise, other variations δx(t), δu(t) or δλ(t) are all
feasible. Setting the terms that multiply these variations to be zero yield Eqs.(6.3)-(6.6). ⋄

6.2.3 Open loop solution

Applying the general optimal control solution in section 6.2.2 to the LQ problem in Eqs.(6.1)-(6.2),
we have:

Theorem 6.2.1 The optimal control is given by:

uo(t) = −R−1BT (t)λ(t) (6.8)

where λ(t) and x(t) satisfy the Hamilton-Jacobi equation:

(
ẋ

λ̇

)

=

(
A(t) −B(t)R−1BT (t)
−Q(T ) −AT (t)

)

︸ ︷︷ ︸

Hamiltonian Matrix - H(t)

(
x
λ

)

(6.9)

with boundary conditions:
x(t0) = x0; λ(tf ) = Sx(tf ). (6.10)

• Boundary conditions are specified at both initial time t0 and final time tf (two point boundary
value problem). In general, these are difficult to solve and require iterative methods such as
shooting method.

• Optimal control in Eq. (6.8) is open loop. It is computed by first computing λ(t) for all
t ∈ [t0, tf ] and then applying uo(t) = −R−1BT (t)λ(t).

• Open loop control is not robust to disturbances or uncertainties.

6.2.4 Feedback control solution

Consider the matrix differential equation using the Hamiltonian matrix H(t), where X1(t), X2(t) ∈
ℜn×n. (

Ẋ1(t)

Ẋ2(t)

)

=

(
A(t) −B(t)R−1BT (t)
−Q(T ) −AT (t)

)

︸ ︷︷ ︸

Hamiltonian Matrix - H(t)

(
X1(t)
X2(t)

)

(6.11)

with boundary conditions X1(tf ) ∈ ℜn×n being any invertible matrix, and

X2(tf ) = SX1(tf ).

X1(t) and X2(t) can be integrated backwards in time from tf → t0.
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Let us assume (and it can be proven) that X1(t) is invertible. We propose that the solution to
the Hamilton-Jacobi equation (6.9)-(6.10) is given by:

(
x(t)
λ(t)

)

=

(
X1(t)
X2(t)

)

v

for some constant vector v.
x(t) and λ(t) as proposed clearly satisfy (6.9), and the boundary condition λ(tf ) = Sx(tf ). The

initial condition x(t0) = x0 can be satisfied by choosing v = X−1
1 (t0)x0.

If we define P (t) = X2(t)X
−1
1 (t), then λ(t) = P (t)x(t), so that the optimal control in Eq. (6.8)

can be implemented as a feedback as given in the following theorem.

Theorem 6.2.2 The cost function (6.2) is minimized using the control:

u∗(t) = −R(t)T BT (t)P (t)x(t) (6.12)

where P (t) ∈ ℜn×n is the solution to the following so called continuous time Riccati Differential
Equation (CTRDE):

−Ṗ (t) = AT (t)P (t) + P (t)A(t)− P (t)B(t)R−1(t)BT (t)P (t) + Q(t); P (tf ) = S. (6.13)

Moreover, the minimum cost achieved using the above control is:

J∗(x0, t0, tf ) := minu(·)J(u, x0) = xT
0 P (t0)x0

Proof: The feedback form of the optimal control Eq.(6.12) has already been shown. To show
that CTRDE in Eq.(6.13) is satisfied by P (t), one needs only differentiate P (t) = X−1

1 (t)X2(t),
and making use of Eq.(6.11) and its boundary conditions.

The proof that P (t) determines the minimal cost will be discussed later using Dynamic Pro-
gramming (DP) principle. ⋄

Remarks

1. P (t) is solved backwards in time from tf → t0 and should be stored in memory before use.

2. The optimal control law is in the form of a time varying linear state feedback u(t) = −K(t)x(t)
with feedback gain K(t) := R(t)T BT (t)P (t). The open loop optimal control can be obtained,
if so desired, by integrating (6.1) with the control (6.12). It is, however, much better to utilize
feedback than to use openloop.

3. The Riccati differential equation can be derived from P (t) = X2(t)X
−1
1 (t) and (6.11).

4. By direct substitution, it is easy to see the solution λ(t) = P (t)x(t) satisfies (6.9)-(6.10).
Since the solution of CTRDE (6.13) does not rely on solving for X1(t) or X2(t) explicitly, the
assumption that X1(t) is invertible is in fact not needed for the proof of this theorem. It can
be thought of as a useful device to guess the solution.

5. The control formulation works for time varying systems, e.g. nonlinear systems linearized
about a trajectory.

6. P (t) can be shown to be associated with the cost-to-go function (see below). Using this
interpretation, it can easily be shown that P (t) must be at least positive semi-definite.
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6.2.5 Cost-to-go function

The matrix function P (t) is associated with the so-called cost-to-go function. By this it is meant
that if at any time t1 ∈ [t0, tf ], and the state is x(t1), then, the control policy (6.12) for the
remaining time period [t1, tf ] will result in a cost J(u, x(t1), t1, tf ) in (6.2) with t0 substituted by
t1 and x0 substituted by x(t1) such that:

Jo(x(t), t, tf ) := minuJ(u, x(t), t, tf ) = xT (t)P (t)x(t)

Since the optimal control, uo(t) = −K(t)x(t) = −R−1(t)BT (t)P (t)x(t), the closed loop system
satisfies,

ẋ = [A(t)−B(t)K(t)]x(t)

so that x(t) = Φ(t, t0)x0 where Φ(t, t0) is the transition matrix for A(t)−B(t)K(t). For this reason,
the achieved minimal cost function must be of the form (omitting final time tf to avoid clutter):

Jo(x0, t0) = J(uo, x0, t0, tf ) = xT
0 P̄ (t0)x0.

for some positive semi-definite matrix P̄ (t0). Our task is to show that P̄ (t0) = P (t0). To derive
this result, we need the dynamic Programming (DP) Principle.

Dynamic Programming Principle

Consider the system:
ẋ = f(x(t), u(t), t), x(t0) = x0,

and the cost index over the interval [t0, tf ] is:

J(u(·), x0, t0) =

∫ tf

t0

L(x(t), u(t), t)dt + φ(x(tf )). (6.14)

In the theorem below, tf is assumed to be fixed.

Theorem 6.2.3 Suppose that uo(t), t ∈ [t0, tf ] minimizes (6.14) subject to xo(t0) = x0 and xo(t)
is the associated state trajectory. Let the (minimum) cost achieved using uo(t) be:

Jo(x0, t0) = arg min
u(τ),τ∈[t0,tf ]

J(u(·), xo, t0, tf )

Then, for any t1 s.t. t0 ≤ t1 ≤ tf , the restriction of the control uo(τ) to τ ∈ [t1, tf ] minimizes

J(u(·), xo(t1), t1) =

∫ tf

t1

L(x(t), u(t), t)dt + φ(x(tf ))

subject to the initial condition x(t1) = xo(t1). i.e. uo(τ) is optimal over the sub-interval [t1, tf ].

Corollary 6.2.4 Let t0 ≤ t1 ≤ tf . Consider the optimal control problem for the sub-interval [t1, tf ].
If Jo(x0, t1) is the optimal cost and the optimal control is given by u(t) = uo(x0, t) for t ∈ [t1, tf ].
Then, the optimal control for the larger interval t ∈ [t0, tf ] with initial condition x(t0) = x0 is given
by:

u(t) =

{

arg minu(·)
∫ t1
t0

L(x, u, t)dt + Jo(x(t1), t1) t ∈ [t0, t1)

uo(x(t1), t) t ∈ [t1, tf ]
(6.15)

where x(t1) is the state attained via the control u(t) above.
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Typical application of DP

A typical use of DP is in computing the optimal control policy utilizing Eq.(6.15).

• Consider a time grid t0 < t1 < . . . < tn < tf .

• Solve the optimal control problem for the sub-interval [tn, tf ] with arbitrary initial states
x(tn) = x. Let the optimal control be denoted by u(t) = uo

n(x, t) and let the optimal cost
given initial state x(tn) = x be denoted by Jo(x, tn). Here uo

n(x, t) for t ∈ [tn, tf ] and arbitrary
initial state x is called the optimal control policy, and Jo(x, tn) is called the cost-to-go function
at t = tn.

• We now consider an iteration starting with k = n. Suppose that the optimal control for the
initial time t = tk has been found and is given by: uo

k(x, t); and Jo(x, tk) is the cost-to-go
function. Now consider initial time tk−1.

1. For each initial state, x(tk−1) = x, compute, according to Eq.(6.15) in Corollary 6.2.4,
the optimal control uo

k−1(x, t) for the interval [tk−1, tf ]:

uo
k−1(x, t) =

{

arg minu(·)
∫ tk
tk−1

L(x, u, t)dt + Jo(x(tk), tk) t ∈ [tk−1, tk)

uo
k(x(tk), t) t ∈ [tk, tf ]

(6.16)

where x(tk) is the state achieved at t = tk from the initial state x(tk−1) using optimal
control uo(t, x(tk−1), t0) over the interval [tk−1, tk].

2. Compute the optimal cost Jo(x, tk−1) for each x.

3. Let k ← k − 1 and repeat from step 1 until k = 0.

• Notice that the optimal cost Jo(x, tk) is the cost-to-go function at time tk.

Relating P (t) to cost-to-go function for the LQ problem

Let us apply DP to the LQ case:

L(x, u, t) = xT Q(t)x + uT R(t)u

φ(x(tf ) = xT (tf )Sx(tf )

f(x, u, t) = A(t)x + Bu

J =

∫ tf

t0

L(x, u, t)dt + φ(x(tf )).

Theorem 6.2.5 The cost-to-go function for any t ∈ [t0, tf ] is given by:

Jo(x, t) = xT (t)P̄ (t)x(t)

where P̄ (t) ≡ P (t) satisfies the Riccati difference equation Eq.(6.13) with boundary condition
P̄ (tf ) = S. P (t) is positive semi-definite for all t ≤ tf . The optimal control policy is given
by:

uo(t) = −R−1(t)BT (t)P̄ (t1)x(t)
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Proof: At t = tf , the cost-to-go function is simply:

Jo(x, tf ) = xT Sx = xT P̄ (tf )x

Hence, P̄ (tf ) = S.
Let t1 = tf and consider t = t1 −∆t where ∆t > 0 is infinitesimally small.
According to Eq.(6.15), the optimal control at t given the state x(t) is obtained by minimizing

minu(t)L(x, u, t)∆t + Jo(x(t1), t1)

Now, x(t1) ≈ x(t) + [A(t)x(t) + B(t)u(t)]∆t. Thus, we minimize w.r.t. u(t),
∫ t1

t

[
x(τ)T Q(τ)x(τ) + uT (τ)R(τ)u(τ)

]
dτ + Jo (x(t1), t1)

≈
[
x(t)T Q(t)x(t) + uT (t)R(t)u(t)

]
∆t + Jo (x(t) + [A(t)x(t) + B(t)u(t)]∆t, t1)

≈
[
x(t)T Q(t)x(t) + uT (t)R(t)u(t)

]
∆t + x(t)P̄ (t1)x(t) + [xT (t)AT (t) + uT (t)BT (t)]P̄ (t1)x(t)∆t

+ xT (t)P̄ (t1)[A(t)x(t) + B(t)u(t)]∆t

Setting the differential w.r.t. u(t) to be 0, we get back the optimal control policy:

uoT R(t) + xT (t)P̄ (t1)B(t) = 0

⇒uo(t) = −R−1(t)BT (t)P̄ (t1)x(t)

The updated optimal cost-to-go function is:

Jo(x(t), t) ≈
[
x(t)T Q(t)x(t) + uoT (t)R(t)uo(t)

]
∆t + [xT (t)AT (t) + uoT (t)BT (t)]P̄ (t1)x(t)∆t

+ xT (t)P̄ (t1)[A(t)x(t) + B(t)uo(t)]∆t + x(t)P̄ (t1)x(t)

This shows that

Jo(x(t), t) ≈ xT (t)P̄ (t1)x(t) + xT (t)
[
AT (t)P̄ (t1) + P̄ (t1)A(t)

−P̄ (t1)B(t)R−1(t)BT (t)P̄ (t1) + Q(t)
]
x(t) ·∆t

=: xT (t)P̄ (t)x(t)

where

P̄ (t1) =P̄ (t) +
[
AT (t)P̄ (t1) + P̄ (t1)A(t)− P̄ (t1)B(t)R−1(t)BT (t)P̄ (t1) + Q(t)

]
∆t (6.17)

Let t → t1, ∆t → −dt, and repeat the process and we get the update recursion in Eq.(6.17).
Moreover, at each time t, Jo(x(t), t) = xT (t)P̄ (t)x, a quadratic form as desired.

As ∆t→ 0, Eq.(6.17) becomes:

− ˙̄P (t) = AT (t)P̄ (t) + P̄ (t)A(t)− P̄ (t)B(t)R−1(t)BT (t)P̄ (t) + Q(t);

which is exactly the Riccati differential equation as before. Hence P̄ (t) = P (t).
Now, since

xT (t)P (t)x(t) =

∫ tf

t

[
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

]
dτ + xT (tf )Sx(tf )

≥ 0

for any x(t), P (t) is positive semi-definite for any t ≤ tf . ⋄
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6.3 Infinite time horizon case

Consider now the case when the system is time invariant, i.e. A, B in (6.1), and Q and R in (6.2)
are constant matrices. Because of the infinite time horizon, the terminal cost condition is negligible.
Thus, we assume that S = 0 and the cost function becomes:

J(u, x0, t0, tf ) =

∫ tf

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt. (6.18)

Let us denote the solution of the CTRDE on the horizon [t, tf ] by P (t, tf ) where t ∈ [t0, tf ].
We are interested in finding the situation when tf → ∞. Since the system is time invariant,

this is equivalent to fixing tf and setting t→ −∞. Three questions we need to ask are:

• For a fixed tf , if we solve P (t, tf ) in (6.13) backwards in time, does P (t→ −∞, tf ) exist (i.e.
does it converge when t→ −∞) ?

• If limt→−∞ P (t, tf ) = limtf→∞ P (t, tf ) = P∞ does exist, there is a constant state feedback

gain given by: K = R−1BT P∞, will the closed loop system:

ẋ = (A−BK)x

be stable?

• If limt→−∞ P (t, tf ) = limtf→∞ P (t, tf ) = P∞ does exist, we know that it must satisfy Ṗ (t) =
0, i.e.

AT P∞ + P∞A− P∞BR−1BT P∞ + Q = 0. (6.19)

which is called the Algebraic Riccati equation (ARE). In that case, which solution of the ARE
does the asymptotic solution of (6.13) correspond to?

Proposition 6.3.1 Let (A, B) be controllable (or just stabilizable). Then, there exists a positive
definite matrix M such that for any t < tf and for all x ∈ ℜn,

xT P (t, tf )x < xT Mx.

Moreover, P (t→ −∞, tf ) = P (t, tf →∞) converge to a positive semi-definite matrix P∞.

Proof: We sketch the proof for the (A, B) controllable.
Let ∆t be an arbitrary fixed time interval. For any initial time t < tf −∆t and initial state x0,

we can design a control u(τ), τ ∈ [t, t + ∆t] such that x(t + ∆t) = 0; and u(τ) = 0 for τ > t + ∆t.
The cost associated with this control is finite and is independent of t. Since P (t, tf ) is positive
semi-definite, xT Px is bounded implies that P is bounded. By choosing different x0, we can define
a positive definite matrix M such that xT Mx is greater than the cost for the initial state x using
the control thus constructed.

Secondly, for any t0 ≤ t1 ≤ t2,

J(u, x0, t0, t2) =

∫ t1

t0

[
xT Qx + uT Ru

]
dτ

︸ ︷︷ ︸

J(u,x0,t0,t1)

+xT (t1)P (t1, tf )x(t1)

since xT (t1)P (t1, tf )x(t1) is the cost-to-go function. From this it can be seen that for any t0 ≤ t1 ≤
t2,

Jo(x0, t0, t2) = xT
0 P (t0, t2)x0 ≥ xT

0 P (t0, t1)x0 = Jo(x0, t0, t1)
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i.e. the optimal cost increases as the time interval increases for the same initial condition. To see
that this is true, suppose xT

0 P (t0, t2)x0 < xT
0 P (t0, t1)x0. Then, using the [t0, t2] optimal control

during the interval [t0, t1] portion alone would achieve a cost over the interval [t0, t1] that is less
than xT

0 P (t0, t1)x0. Since the latter is supposed to be the optimal, this is a contradiction.

This shows that for any ∆ > 0 and x ∈ ℜn,

xT Mx ≥ xT P (t0, t2)x ≥ xT P (t0, t1)x

From analysis, we know that a non-decreasing, upper bounded function converges, thus, xT P (t, tf +
∆)x = xT (t−∆, tf )x converges as ∆→∞. By choosing various x, a matrix P∞ can be constructed
s.t. for any x,

xT P (t, tf + ∆)x→ xT P∞x.

⋄

Example To illustrate the necessity of (A, B) being stabilizable, consider a uncontrollable system

(
ẋ1

ẋ2

)

=

(
0 0
0 1

)(
x1

x2

)

+

(
1
0

)

u

with

J =

∫ tf

t0

[x2
2 + u2]dt

Since u has no influence on x2, the optimal control is u ≡ 0 but tf →∞

Jo(x, t0, tf ) =

∫ tf

t0

x2
2(t0)e

2(t−t0)dt→∞

Next, we consider the stability question. The idea is that to ensure that the closed loop system
is stable, one must ensure that all possible unstable behavior must be reflected in the performance
index.

Proposition 6.3.2 Let Q = CT C and suppose that (A, B) is stabilizable. If (A, C) is observable
(or detectable), then the optimal closed loop control system

ẋ = (A−BR−1BT P∞)x

is stable. Furthermore, P∞ is strictly positive definite (positive semi-definite) if (A, C) is observable
(detectable).

Proof: Suppose that (A, C) is detectable but the closed loop system is unstable. Let ν be the
unstable eigenvector of A−BR−1BT P∞ such that

λν = (A−BR−1BT P∞)ν; Re(λ) > 0.

Let x(t0) = ν be the initial state. Then, x(t) = eλ(t−t0)ν. Since (A, B) is stabilizable, the cost is
finite so that ∫ ∞

t0

xT Qx dt <∞;

∫ ∞

t0

uT Ru dt <∞
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We assume that λ is real for simplicity. If λ is complex, we need to consider both λ and λ̄
simultaneously. Then, since eλ(t−t0) > 1 for all t− t0 > 0,

∫ ∞

t0

νT Qνe2λ(t−t0)dt <∞ ⇒ Cν = 0.

∫ ∞

t0

uT Ru =

∫ ∞

t0

νT PBR−1BT Pνe2λ(t−t0)dt <∞ ⇒ R−1BT P∞ν = 0.

This implies that

(A−BR−1BT P∞)ν = Aν = λν

This contradicts the assumption that (A, C) is detectable, since,

(
λI −A

C

)

ν =

(
0
0

)

.

Hence, (A, C) is detectable implies that the closed loop system is stable.

To show that P∞ is strictly positive definite when (A, C) is observable, suppose that P∞ is
merely positive semi-definite so that,

xT
0 P∞x0 =

∫ ∞

t0

xT CT Cx + uT Ru dt = 0

for some initial state x(t0) = x0. This implies that for all t, uT (t)Ru(t) = 0 or u(t) = 0.; and
Cx(t) = 0. Or, for all t,

ẋ = Ax; Cx = 0.

This is not possible if (A, C) is observable. ⋄
If (A, C) is merely detectable, P∞ can be semi-definite only. Let ν be an unobservable eigenvector.
Then, for x(t0) = ν, u = 0 is the optimal control and x(t) = eλ(t−t0)ν is the state trajectory. Thus,

νT P∞ν =

∫ ∞

to

xT (t)CT Cx(t) dt = 0,

Example To illustrate the necessity for (A, C) detectable, consider the undetectable system

(
ẋ1

ẋ2

)

=

(
0 0
0 1

)(
x1

x2

)

+

(
u1

u2

)

with

J =

∫ tf

t0

[x2
1 + u2

1 + u2
2] dt

For the initial condition of (x1, x2) = (0, 1), the optimal control is u1(t) = u2(t) = 0 with an optimal
cost of 0. However,

x2(t) = x2(0)et−t0 →∞ as t→∞.

Thus, the closed loop system is unstable.

The main result combining the above two propositions is given by the following:
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Theorem 6.3.3 For the time invariant system ẋ = Ax + Bu, initial condition x(0) = x0, with
(A, B) is stabilizable. Let the performance criteria be:

J(u, x0, t, tf ) =

∫ tf

t

xT (τ)Qx(τ) + uT (τ)Ru(τ)dτ (6.20)

as tf →∞, where Q = CT C ≥ 0 and R > 0 are positive semi-definite and definite respectively. In
that case, the solution to (6.13) P (t, tf ) with P (tf , tf ) = 0 satisfies:

lim
tf→∞

P (t, tf ) = lim
t→−∞

P (t, tf ) =: P∞,

exists and the optimal control is given by:

u(t) = −R−1BT P∞x(t). (6.21)

Furthermore, if (A, C) is detectable, then the closed loop system A−BR−1BT P∞ is stable.
If (A, C) is observable, then P∞ is positive definite. If (A, C) is only detectable, then P∞ is

merely positive semi-definite.

Remarks:

• S has been thrown out, because as tf → ∞ it is not important (at least for the (A, C)
detectable case).

• If (A, B) is stabilizable, then the boundedness of P (t, tf ) as tf → ∞ is automatic. This is
because the cost J of using any control that steers the system to x = 0 in finite time is finite.
This is so because the cost, given by xT

0 P (t, tf )x0, for using the optimal control should be
even less. Since this is true for any arbitrary x0, P (t) must be finite also.

• The convergence of limtf→∞ P (t, tf ) → P∞ where P∞ is some positive semi-definite matrix
is guaranteed by the stabilizability condition. Specifically, P (t, tf ) is finite for any tf , and
the fact that xT

0 P (t, tf )x0 ≤ xT
0 P (t, tf + ∆)x0 = xT

0 P (t −∆, tf )x0. The latter is due to the
increasing nature of J(u, x0, t, tf ) in (6.20) as tf increases.

• The convergence limtf→∞ P (t, tf ) → P∞ can be guaranteed by the more relaxed condition
that (A, C) does not have any unobservable mode on the imaginary axis, and S is sufficiently
large. (See Appendix of Goodwin LQ2-D.4). Furthermore, the closed loop system obtained
using u(t) = −R−1BT P∞ would also stable.

• Given modest assumptions (stabilizability and detectability), LQ methodology automatically
generates a state feedback controller that is stable.

The need for the detectability assumption is to ensure that the optimal control computed using
the limtf→∞P (t, tf ) generates a feedback gain K = R−1BT P s

∞ that stabilizes the plant, i.e. the
eigenvalues A−BK lie on the open left half plane.

One can easily see that if there is an unstable mode that is not observable (i.e. not detectable)
then the optimal control will choose not to do anything about it (since it is not reflected in the
performance criteria). Therefore, if (A, C) does not have unobservable mode on the imaginary axis,
then for P (t) → P∞, we need to re-insert a sufficiently large final penalty xT (tf )Sx(tf ) in (6.20)
with S > P∞.
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6.4 Discrete time LQ problem

In passing, we mention that there is an equivalent theory for discrete time systems. For the system,

x(k + 1) = A(k)x(k) + B(k)u(k); x(0) = x0.

with an equivalent performance criteria:

J = xT (kf )Sx(kf ) +

kf−1
∑

k=k0

[
xT (k)Q(k)x(k) + uT (k)R(k)u(k)

]

then the optimal control is given by:

u(k) = − [R(k) + BT (k)P (k + 1)B(k)]−1BT (k)P (k + 1)A(k)
︸ ︷︷ ︸

K(k)

x(k) (6.22)

where P (k) is given by the the discrete time Riccati difference equation (DTRDE):

P (k) = AT (k)P (k+1)A(k)+Q(k)−AT (k)P (k+1)B(k)[R(k)+BT (k)P (k+1)B(k)]−1BT (k)P (k+1)A(k)

with boundary condition P (kf ) = S.

The optimal cost-to-go is: Jo(x, k) = xT P (k)x.

For the infinite horizon (kf →∞) LQ regular problem, consider the time invariant case where

x(k + 1) = Ax(k) + Bu(k)

and Q(k) = Q and R(k) = R are constant positive semi-definite, and positive definite matrices.
The P∞ matrix satisfies the discrete time Algebraic Riccati Equation (ARE):

AT PA− P −AT PB[R + BT PB]−1BT PA + Q = 0.

u(k) = − [R + BT P∞B]−1BT P∞A
︸ ︷︷ ︸

K

x(k) (6.23)

If (A, B) is stabilizable, then the closed loop system is stable, meaning that the eigenvalues of
A − BK with K given in (6.22) have magnitudes less than 1 (lie in the unit disk centered at the
origin).

6.5 Eigenvalue placements

LQR can be thought of as a way of generating stabilizing feedback gains. However, exactly where
the closed loop poles are in the LHP is not clear. We now propose a couple of ways in which we
can exert some control over them. The idea is to transform the problem.

In this section, we assume that (A, B) is controllable, and (A, C) is observable where Q = CT C.
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6.5.1 Guaranteed convergence rate

To move the poles so that they are at least to the left of −α (i.e. if the eigenvalues of A−BK are
λi, we want Re(λi) < −α, hence more stable), we solve an alternate problem. Since

ẋ = A′x + Bu→ Re
(
eig(A′ −BK)

)
< 0

Thus, setting A′ = A + αI, we solve the LQ problem for the plant:

ẋ = (A + αI)x + Bu.

This ensures that the eigenvalues of Re((A+αI)−BK) < 0. Notice that (A+αI)−BK and A−BK
have the same eigenvectors. Thus, the eigenvalues of A− BK, say λi and those of A + αI − BK,
σi, are related by λi = σi − α. Since Re(σi) < 0, Re(λi) < −α.

6.5.2 Eigenvalues to lie in a disk

A more interesting case is to ensure that the eigenvalues of the closed loop system lie in a disk
centered at (−α, 0) and with radius ρ < α. This, in addition to specifying the convergence rate to
be faster than α − ρ, it also specifies limits for the damping ratio, so that the system will not be
too oscillatory.

The idea is to use the discrete time LQ solution, which ensures that the eigenvalues of A−BK
lie in a unit disk centered at the origin. We need to scale the disk and to translate it. Let the
continuous time plant be:

ẋ = Ax + Bu

• If we solve the discrete time LQ problem for the plant,

x(k + 1) =
1

ρ
A′x(k) +

1

ρ
Bu(k)

then, the eigenvalues of 1
ρ
(A′−BK) would lie in the unit disk and the eigenvalues of (A′−BK)

would lie in the disk with radius ρ, both centered at the origin.

• Using the same trick as before, we now translate the eigenvalues by −α by setting A′ = A+αI.

In summary, if we use the discrete time LQ control design method for the plant

x(k + 1) =
1

ρ
(A + αI)x(k) +

1

ρ
Bu(k)

then, the eigenvalues of 1
ρ
((A + αI) − BK) would lie within the unit disk centered at the origin.

This implies that the eigenvalues of ((A+αI)−BK) lie in a disk of radius ρ centered at the origin.
Finally, this implies that the eigenvalues of A−BK lie in a disk or radius ρ centered at (−α, 0).

6.6 Selection of Q and R

The quality of the control design using LQ method depends on the choice of Q and R (and for
finite time S also). How should one choose these? Normally, this requires some kind of trial and
error.

• Generally an iterative design/simulation process is needed;
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• If there is a specific output z = Cx that need to be kept small, choose Q = CT C.

• Use physically meaningful state and control variables and use physical insights to select Q
and R.

• Choose Q and R to be diagonal in the absence of information about coupling.

• Obtain acceptable excursions:

|xi(t)| ≤ xi,max, |ui(t)| ≤ ui,max, |xi(tf )| ≤ xi,f−max

Then choose Q, R and S to be inversely proportional to x2
i,max, u2

i,max and x2
i,f−max respec-

tively.

• Off diagonal terms in Q reflect coupling. e.g. to coordinate x1 = −kx2, one can choose

C = [1 k] so that Q =

(
1 k
k k2

)

. One can add other objectives to Q.

• For finite time regulator problem with time interval T . The ratio of the running cost objective
and the terminal cost objective should be scaled by 1/T and the dimension of x ∈ ℜn and
u ∈ ℜm:

∫ tf=t0+T

t0

1

nT
xT Qx +

1

mT
uT Ru dt + xT (tf )Sx(tf ).

where Q, R, S are selected based on separate x(t), u(t) and x(tf ) criteria. Additional relative
scalings should be iteratively determined.

• If R = diag[r1, r2, r3] and after simulation, |u2| is too large, increase r2;

• If after simulation, state x3 is too large, modify Q such that xT Qx← xT Qx + γx2
3 etc.

• If performance is related to frequency, use frequency weighting (see below).

6.7 Frequency Shaping

The original LQ problem is specified in the time domain. The cost function is basically the L2

norms of the control, and of z = Q
1

2 x. In many situations, it is more advantageous to specify the
criteria in frequency domain. For example, it might be more costly to utilizing control effort that
has high bandwidth; or if we know that disturbances to the system lie within a narrow bandwidth.
Control that achieve robustness are also more easily specified in the frequency domain (e.g. in loop
shaping concepts).

We begin with the Parseval Theorem which states that for a squared integrable function
h(t) ∈ ℜp with

∫ ∞
−∞ hT (t)h(t)dt <∞,

∫ ∞

−∞
hT (t)h(t)dt =

1

2π

∫ ∞

−∞
H∗(jw)H(jw)dw (6.24)

where H(jw) is the fourier transform or as H(s = jw), i.e. the Laplace transform of h(t) evaluated
at s = jw. H∗(jw) denotes the conjugate transpose of H(jw). Hence, for H(s) with real coefficient,
H∗(jw) = H(−jw)T .

Parseval theorem states that the energy in the signal can be evaluated either in the frequency
or in the time domain.
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So, suppose that we want to optimize the criteria in the frequency domain as:

J(u) =
1

2π

∫ ∞

−∞
X∗(jw)Q∗

1(jw)Q1(jw)X(jw) + U∗(jw)R∗
1(jw)R1(jw)U(jw) dw (6.25)

This says that the state and control weightings are given by

Q(w2) = Q∗
1(jw)Q1(jw); R(w2) = R∗

1(jw)R1(jw).

If we define X1(jw) = Q1(jw)X(jw), U1(jw) = R1(jw)U(jw), then

J(u) =
1

2π

∫ ∞

−∞
X∗

1 (jw)X1(jw) + U∗
1 (jw)U1(jw) dw

Now, apply Parseval Theorem in reverse,

J(u) =

∫ ∞

−∞
xT

1 (t)x1(t) + uT
1 (t)u1(t) dt. (6.26)

If we know the dynamics of x1 and u1 is the control input, then we can solve using the standard
LQ technique.

We express the filters Q1(s) and R1(s) as filters (e.g. low pass and high pass) with the actual
state and input of the system x(t) and u(t) as inputs, and frequency weighted state x1(t) and u1(t)
as outputs:

Q1(s) = CQ(sI −AQ)−1BQ + DQ (6.27)

R1(s) = CR(sI −AR)−1BR + DR (6.28)

which says that in the time domain:

ż1 = AQ z1 + BQ x (6.29)

x1 = CQ z1 + DQ x (6.30)

and similarly,

ż2 = AR z2 + BR u (6.31)

u1 = CR z2 + DR u. (6.32)

Hence we can define an augmented plant:

d

dt





x
z1

z2



 =





A 0 0
BQ AQ 0
0 0 AR









x
z1

z2



 +





B
0

BR



u(t)

or with x̄ = [x; z1; z2], etc.
˙̄x = Āx̄ + B̄u.

Since

u1 =
(
0 0 CR

)
x̄ + DRu

x1 =
(
DQ CQ 0

)
x̄
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the cost function Eq.(6.26) becomes:

J(u) =

∫
(
x̄T uT

)
(

Qe NT

N Re

)(
x̄
u

)

dt (6.33)

where

Qe =





DT
QDQ DT

QCQ 0

CT
QDQ CT

QCQ 0

0 0 CT
RCR





N =





0
0

CT
RDR



; Re = DT
RDR.

Eq.(6.33) is still not in standard form yet because of the off diagonal block N . We can convert
Eq.(6.33) into the standard form if we consider:

u(t) = −R−1
e Nx̄ + v (6.34)

The integrand in Eq.(6.33) becomes:

(
x̄T vT

)
(

I −NT R−1
e

0 I

)(
Qe NT

N Re

)(
I 0

−R−1
e N I

)(
x̄
v

)

=
(
x̄T vT

)
(

Qe −NT R−1
e N 0

0 Re

)(
x̄
v

)

Then, define

Q̄ = Qe −NT RT
e N, R̄ = Re (6.35)

and new state dynamics:

˙̄x = (Ā− B̄R−1
e N)x̄ + B̄v (6.36)

and cost function,

J(v) =

∫

x̄T Q̄x̄ + vT R̄v dt. (6.37)

Eqs.(6.36)-(6.37) are then in the standard LQ format.
The stabilizability and detectability conditions are now needed for the the augmented system

(what are they?).

6.8 Solution to the ARE via the Hamiltonian Matrix

For the infinite time horizon LQ problem, with (A, B) stabilizable and (A, C) detectable, P∞ must
satisfy the Algebraic Riccati Equation (ARE):

AT P∞ + P∞A− P∞BR−1BT P∞ + Q = 0. (6.38)

This is a nonlinear algebraic quadratic matrix equation. There are generally multiple solutions. Is
it possible to solve this without integrating the CTRDE (6.13)?
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Recall that the solution P (t) can be obtained from the matrix Hamilton equation:

(
Ẋ1

Ẋ2

)

=

(
A −BR−1BT

−Q −AT

)

︸ ︷︷ ︸

Hamiltonian Matrix - H

(
X1

X2

)

(6.39)

with boundary conditions: X1(tf ) invertible and X2(tf ) = SX1(tf ) so that P (t) = X2(t)X
−1
1 (t).

Denote the 2n eigenvalues and 2n eigenvectors of H by respectively:

{λ1, λ2, . . . , λ2n} , {e1, e2, . . . , e2n}

Let us choose n pairs of these:

Λ = diag {λi1, λi2, . . . , λin} ,

(
F
G

)

=
(
ei1 ei2 . . . ein

)
,

Proposition 6.8.1 Let P∞ := GF−1 where the columns of

(
F
G

)

∈ ℜ2n×n are n of the eigenvectors

of H. then, P∞ satisfies the Algebraic Riccati Equation (6.38).

Proof: We know that P (t) = X2(t)X
−1
1 (t) where X1(t) and X2(t) satisfy the Hamiltonian

differential equation (6.39). For P∞ = GF−1 to satisfy Eq.(6.38), one needs only show that Ṗ (t) = 0
when X1(t) = F and X2(t) = G. This is so because

(
F
G

)

Λ =

(
A −BR−1BT

−Q −AT

)

︸ ︷︷ ︸

Hamiltonian Matrix - H

(
F
G

)

. (6.40)

so that

Ṗ = G
dX−1

1

dt

∣
∣
∣
∣
F

+
dX2

dt

∣
∣
∣
∣
G

F−1

= −GF−1FΛF−1 + GΛF−1 = 0.

⋄

This proposition shows that there are “2n choose n” (i.e. 2n!/n!) solutions of P∞, depending
on which n of the 2n eigenvectors of H are picked to define F and G.

However, we know that the closed loop system matrix:

Ac = A−BR−1BT P∞ = A−BR−1BT GF−1.

must be stable if (A, B) is stabilizable and (A, C) is detectable.

Proposition 6.8.2 Suppose that (A, B) is stabilizable and (A, C) is detectable. Then, the eigen-
values of H are symmetrically located across the imaginary and real axes with no eigenvalues on
the imaginary axis.

Proof: Consider a invertible coordinate transformation

T =

(
I 0

P∞ In

)

, T−1 =

(
I 0
−P∞ In

)

.
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Hence,

T−1HT =








A−BR−1BT P∞
︸ ︷︷ ︸

Ac

−BR−1BT

0 −(A−BR−1BT P∞)T

︸ ︷︷ ︸

AT
c








Since T−1HT and H share the same eigenvalues, this shows that H contains the eigenvalues of Ac

as well as of −AT
c . Hence, n eigenvalues of H must lie on the closed RHP, and n eigenvalues lie

on the closed LHP. In other words, the eigenvalues of H are symmetrically located about both the
real and imaginary axes.

Further, Ac (and hence H) cannot have any eigenvalues on the imaginary axis. For, otherwise,
the optimal cost will be infinite. Hence, H must have n eigenvalues on the open LHP, and n on
the open RHP . ⋄

Proposition 6.8.3 Suppose that (A, B) is stabilizable and (A, C) is detectable. The steady state

solution of the CTRDE is the P∞ = GF−1 where

(
F
G

)

are chosen to consist of the n eigenvectors

that correspond to the stable eigenvalues of H.

Proof: Since

Ac = A−BR−1BT P∞ = A−BR−1BT GF−1

AcF = [A, BR−1BT ]

(
F
G

)

= FΛ

where the last equality is obtained from Eq.(6.40). Hence, diag(Λ) consists of the eigenvalues of
Ac, and columns of F are the eigenvectors. Since (A, B) and (A, C) are stabilizable and detectable,
Ac is stable. Thus, Λ must have negative real parts. ⋄

Remark Integrating the Hamiltonian matrix is not a good idea, either in forward time or in
reverse time, since either way will be unstable. Integrating the Riccati backwards in time is more
reliable. The Hamiltonian matrix is useful for solving for the solution to the ARE though, via its
eigenvalues and eigenvectors.

6.9 Return Difference Equality and Eigenvalues of LQ system

Let Φ(s) = (sI −A)−1 and G(s) = C(sI −A)1B = CΦ(s)B where Q = CT C.
Let the optimal feedback be: u = −R−1BT Px(t) where P is the steady state solution of the

Riccati equation, and K = R−1BT P is the feedback gain.

Proposition 6.9.1 The LQ optimal feedback system satisfies the following so called Return Dif-
ference Equality:

(I + KΦ(−s)B)T R(I + KΦ(s)B) = R + GT (−s)G(s).

I + KΦ(s)B is known as the Return Difference as it computes difference of the signal before
and after the feedback loop.
Proof: From the Alegbraic Riccati Equation Eq.(6.38) and by adding and subtract sP ,

(−sI −A)T P∞ + P∞(sI −A) + P∞BR−1BT P∞ = CT C
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Multiplying on the left by B( − sI − AT )−1 and on the right by (sI − A)−1B and noting that
RK = BT P ,

BT (−sI −AT )−1KT R + RK(sI −A)−1B + BT (−sI −AT )−1KT RK(sI −A)−1B

=BT (−sI −AT )−1CT C(sI −A)−1B = GT (−s)G(s)

By grouping the terms on left hand side into a quadratic form:

[I + BT (sI −AT )−1KT ]R[I + K(sI −A)−1B] = GT (−s)G(s)

⋄

Notice that L(s) = KΦ(s)B (dimension of m = number of input) is like the loop gain of the
closed loop system; and G(s) is the open loop (uncontrolled) system. Classically, I + L(s) is the
difference between a signal entering the loop and itself after going round the loop once. It is called
the Return Difference.

6.9.1 Robustness of LQ

The return difference equality gives a robustness property of the system. Plotting L(jω) as in
Nyquist plot, the closed loop system is stable if L(jω) has the appropriate number of encirclement
of the −1 point. Since the nominal LQ system is stable, the Nyquist plot tells us how much L(jω)
can be perturbed without changing encirclement of the (−1, 0) point.

For the single input system, let r = R. The return difference equality says:

|1 + L(jω)|2 = 1 +
1

r
|G(jω)|2 ≥ 1.

Hence, L(jω) is separated from (−1, 0) by a disk of radius 1 centered at (−1, 0).
This implies the following robustness properties of LQ system:

• Infinite positive gain margin

• 50% negative gain margin

• 60 degree phase margin.

Simultaneous change in phase and magnitude can reduce these robustness results.

6.9.2 Discrete time systems - robustness etc.

There is a similar result for discrete time LQ which says that:

[I + KΦ(z−1)B]T (R + BT PB)[I + KΦ(z)B] = R + G(z−1)G(z)

from which we have for (Single Input systems) the following robustness properties:

• Let L(z) = KΦ(z−1)B,

‖1 + L(ejw)‖ ≥
√

R

R + BT PB

• The tolerable loop % loop gain change:

100

1 +
√

[R/(R + BT PB)]
< %loopgainchange <

100

1−
√

[R/(R + BT PB)]

• Phase margin > 2sin−1(0.5
√

R/(R + BT PB)).
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6.9.3 Symmetric Root Locus

Lemma 6.9.2 The determinant of the return difference satisfies the following relation relating
closed loop poles to the open loop poles.

det[I + KΦ(s)B] =
det(sI −A + BK)

det(sI −A)

Let β(s) = det(sI−A+BK) be the closed loop characteristic polynomial; and α(s) = det(sI−A)
be the open loop characteristics polynomial.

Using the above lemma, by taking the determinant of the return difference equality gives:

β(−s)β(s)

α(−s)α(s)
= det(I + R−1GT (−s)G(s))

For an r output system, G(s) = C(sI −A)−1B = CAdj(sI−A)B
α(s) = 1

α(s)Φ(s) where Φ(s) =








Φ1(s)
Φ2(s)

...
Φr(s)








.

Rewriting ΦT (−s)Φ(s) = m(−s)m(s) (a scalar polynomial), we have

β(−s)β(s) = α(−s)α(s) +
1

r
m(s)m(−s)

Notice that m(s)m(−s) is the numerator GT (s)G(s). In the single output case, m(s) IS the nu-
merator of G(s) and its roots are the zeros of G(s).

This relationship reminds us of the root locus technique of finding the closed loop poles based
on open loop poles and zeros. The one exception is that we need to include both the open loop
poles and zeros and their reflections about the imaginary axis. Also, the root locus is for the closed
loop poles and the reflection across the imaginary axis.

We have the following results:

• When r is large, i.e. 1/r is small (control is expensive), the closed loop poles approach the
stable open loop poles or the negative of the unstable open loop poles.

• When r is small, i.e. 1/r is large, (control is cheap), as many closed loop poles as number of
open loop zeros are close to stable open loop zeros or the negative of the non-minimum phase
open loop zeros.

• In the cheap control case, the remaining poles approach infinity in a manner such that they
and their reflections across the imaginary axis have asymptotes that are evenly distributed.

This motivates the design rule:

1. Choose C in Q = CT C such that n− 1 zeros of G(s) = C(sI −A)−1B are at the desired pole
location.

2. Use cheap control r → 0 to design LQ system so that n − 1 poles approach these desired
locations.

3. It can be shown that when r → 0, K ≈ C/
√

r. So that the loop gain is approximately
L(s) = 1√

r
C(sI −A)−1B. At high frequency |L(jω)| ≈ CB√

rω

4. We can choose r to pick the bandwidth ωc which is where |L(jωc)| ≈ 1. Thus, choose
r ≈ CB/ωc where ωc is the desired bandwidth.




